180 The recursion theorem Theorem I

of analysis, can be used to show the existence of various implicitly defined
functions.

For a simple illustration of the content, power, and use of the recursion
theorem, consider the following question. Does there exist an m such that
W, = {m}? At first glance, the existence of such an m might appear to be
an arbitrary and accidental feature of the indexing of recursively enumerable
sets. Indeed, it might seem likely that, in our indexing, no such m exists.

| In §11.2, however, we use the recursion theorem to show that such an m
| must exist for our indexing of recursively enumerable sets and for all other
acceptable indexings of the recursively enumerable sets.

The recursion theorem is due to Kleene (as are many of its known

applications).

§11.2 THE RECURSION THEOREM

The recursion theorem is given in its strongest and most general form in
Theorem IV below. TFor expository purposes, three simpler versions of the
theorem are given first. The results stated explicitly in Theorems II, III,
and IV are already implicit in the proof for Theorem I.

Theorem I Let f be any recursive function; then there exists an n such that
©On = @fn)-

(We call n a fized-point value for f.)

Proof. Let any u be given. Define a recursive function y by the follow-
ing instructions: to compute ¥(z), first use P, with input u; if and when this
terminates and gives an output w, use P, with input z; if and when this
terminates, take its output as ¢(z). We summarize this:

xb(ib) = {S"ﬂou(u)(x)’

divergent,

if ¢,(u) convergent;
if ¢, (u) divergent.

The instructions for ¢ depend uniformly on w. Take § to be the recursive
function which yields, from %, the Gédel number for these instructions for -
Thus

if ¢.(u) convergent;

’ - Poutw (Z),
eia(x) = l if ¢, (u) divergent.

divergent,

Now let any recursive function f be given. Then fj is a recursive func-
tion. Let » be a Godel number for f§. Since ¢, = f§ is total, (V) 18
convergent. Hence, putting » for » in the definition of §, we have

Pi) = Po,(v) = Pii(v)-

Thus n = §(») is a fixed-point value, as desired.[X]
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Corollary I Let f be any recursive Junction; then there exists an n such
that Wn == Hff(n).

Proof. Immediate.x]

Example. Consider the illustrative question suggested in §11.1: does
there exist an m such that W,, = {m}? By Church’s Thesis (and the s-m-n
theorem), there is a recursive function f such that for any x, Wysey = {z}
Applying Corollary I, we have an 7n such that W, = %/Vf(f(z) Hencé
W, = {n}, and the question asked in §11.1 has an afﬁrmatigg answer
(Note that this proof can be carried through for any Godel numbering that is.
acceptable in the sense of Exercise 2-10; see also Exercise 11-12.)

Theorem I can be strengthened in three ways: (1) we can show that n
depends uniformly on a Gédel number for f; (2) we can show that when f
involves other parameters recursively, then 7 can be made to depend uni-
formly on those parameters; and (3) we can show that for any f, an infinite
set of fixed-point values can be recursively enumerated. We g,ive (1) and
(2) separately in Theorems IT and III. We combine (1), (2), and (3) in our
'most general formulation, Theorem IV. Theorems I ’II ;Lnd IIT are all
included in Theorem IV. Theorems I and IIT will be :ohe ’forms most com-
monly used in applications.

Theorem II There exisis a recursive Sfuncti
. ' ction n such that
if ¢. s lotal, then o o %

Pn(a) = Po,(n(2))-

Proof. Let ¢. = f and consider the proof of Theorem I. By Theorem
}-VI, v, the Godel number for fj, can be obtained uniformly from z. Let
¥ be 2 recursive function such that ¢s;y = ¢.§. Then our desired recursive
function n is obtained by defining n(2) = §i(2).x

Corollary II There exists a recursi 3
' : we function n such that for
if ¢. is total, then ihails &

Waey = We,ne-
Proof. Immediate.x

Theorem IIT Let f be a recursive Sfunction of k + 1 variables. Then

ther . . . .
€ exists a recursive function n; of k variables such that for all x4, X,
el R,

Prploy, ..., ) = Pflng(zy, ..., TE)sTLy e ey z) .

Proof. The construction i
roof. parallels that in Theorem I. Define § to b
fuhctlon of k 4 1 variables such that i

S5 Ak .
Piiu ( ) Pout+d(u,zy, .. ., k) (?/), if ¢1(¢+ )(u;xl; v o 7xk) 18
B L) o0 s , =
o) Y b . convergent;
e (D) :
ivergent, if oo ™ By « . . ) 18

divergent.



